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Theory of optical spectroscopy by digital autocorrelation 
of photon-counting fluctuations 

E. JAKEMAN 
Royal Radar Establishment, Malvern, Worcs. 
MS.  received 22nd October 1969 

Abstract. Digital autocorrelation of optical signals is discussed with particular 
reference to the technique of clipping, reported briefly in an earlier publication. 
A detailed analysis of the relationship between the autocorrelation functions of 
clipped and unclipped photon-counting fluctuations is given. By evaluating the 
generating function for the joint distribution of intensity fluctuations, correc- 
tions to the earlier results are calculated which arise if the time over which the 
signal is sampled is not negligible compared with any coherence time of the 
light. The effect of clipping in heterodyne experiments is also analysed. 

1. Introduction 
Statistical techniques are finding application in an ever increasing number of 

problems in optical spectroscopy, ranging from turbulence measurements in fluids to 
the determination of diffusion constants of macromolecules. These problems neces- 
sitate the analysis of optical spectra with linewidths in the range 1-lo8 Hz. Conven- 
tional optical interference techniques become impractical for such measurements 
owing to the enormous paths (perhaps as much as lo' m) required to resolve small 
frequency differences in the optical region. 

The  fluctuating quantity observed in statistical experiments is the intensity or, 
more precisely, the square of the envelope of the field defined by 

I ( t )  = G+(t )B-( t ) .  (1) 
Here d?+(t) is the positive frequency part of the electric field corresponding quantum- 
mechanically to the annihilation of photons by the detection process. The  space 
dependence of the field has been dropped since detection at a single space point will 
be assumed throughout the present work. The  quantity I ( t )  is modulated on a time 
scale determined by the spectral properties of the light field and these may be re- 
covered by suitable measurement of its fluctuations. T o  this end, the techniques of 
intensity-fluctuation spectroscopy familiar to workers in the radar field (Atlas 1964) 
have in recent years been applied successfully at optical frequencies (for rei riews ' see 
Benedek 1968, Cumniins and Swinney 1969, Pike 1969). Such experiments have 
usually been carried out using a scanning electrical filter or spectrum analyser. 
Several other statistical methods can be used to extract spectral information from 
the fluctuations in I(t) ,  including the measurement of integrated photon-counting 
statistics (Jakeman et  al. 1968). The  relative merits of the various techniques are 
discussed by Foord et al. (1969), who conclude that direct autocorrelation of I ( t )  in 
real time offers most of the advantages and few of the disadvantages of the other 
methods available. 

When a high-intensity electric field is detected by a photomultiplier the output 
train of photoelectrons is essentially a continuous current. Although it is possible to 
digitalize artificially this current (as is sometimes done at microwave frequencies) an 
analogue autocorrelation technique seems more appropriate. I n  the case of light fields 
which give rise to rather low rates of photoelectron emission, however, analogue 
autocorrelation introduces an unnecessary dependence on fluctuations in the experi- 
mental apparatus and a digital technique, whereby the emissions of individual 
photoelectrons are correlated, is to be preferred. 
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The process of digital autocorrelation of optical intensities in real time is at first 
sight complex and the cost of instrumentation prohibitive owing to the rapidity with 
which multiplication and storage must be carried out. A rather similar problem 
confronted workers in the radar field many years ago, however, and was overcome by 
the technique of ‘clipping’. This entails replacing the signal, before autocorrelation, 
by a series of ones and zeros according as it lies above or below a specified, though not 
necessarily constant, ‘clipping’ level. Autocorrelation of the clipped signal is a 
relatively simple matter and can in certain circumstances give information about the 
true autocorrelation function. For example, Van Vleck (1943, see also Van Vleck and 
Middleton 1966) has shown that if a Gaussian field with zero mean is replaced by one 
or zero according as it is positive or negative (an extreme form of clipping known as 
‘hard limiting’) then the autocorrelation function of the clipped signal is 2/n  times 
the arc sine of the original one. The technique takes advantage of the fact that any 
signal contains more information than is necessary for the construction of its first-order 
autocorrelation function. In  practice, simplification of the autocorrelation process by 
clipping is obtained at the expense of a small increase in the number of samples (and 
hence the experimental time) required to attain the same statistical accuracy as a 
comparable direct autocorrelation. 

Since it was originally formulated in connection with the measurement of field 
fluctuations in the microwave region of the spectrum, the method of clipping is not 
immediately applicable to intensity measurements at optical frequencies. By analogy, 
one possibility is to replace the intensities to be correlated (multiplied) by zero or one 
according as they lie below or above some predetermined level. However, the extrac- 
tion of the true correlation function from such measurements is normally a difficult 
mathematical problem and a somewhat different technique-that of clipping in only 
one channel-proves to be more useful in practice. Carrying over such techniques 
into the digital analysis of trains of photon detections is a relatively straightforward 
step and some preliminary results, valid for Gaussian light of arbitrary spectral profile, 
were presented in an earlier publication (Jakeman and Pike 1969 b). 

In  the present paper the relationship between autocorrelation functions of clipped 
and unclipped photon-counting distributions is examined in more detail, Contrary to 
the assumption implicit in the previous work, photon-counting distributions can in 
practice be sampled over times which are not negligible compared with any coherence 
time of the light under investigation. The  consequent modification of the earlier 
results may be calculated with the help of the generating function for the joint 
probability distribution of the integrated intensities and the present work is devoted 
in part to the evaluation of this quantity. The complexity of the problem necessitates 
the assumption of a simple model field, and in order to gain some insight into the size 
of corrections to the previous results they are calculated for the case of Gaussian- 
Lorentzian light. 

A further problem tackled in the present paper is that of the clipped Doppler 
experiment. In  many situations, particularly when the statistics of the signal are 
unknown, Doppler or heterodyne spectroscopy has proved to be a more useful 
technique for the measurement of field spectra than intensity-fluctuation spectro- 
scopy. The digital autocorrelation of trains of photon detections in such an experi- 
ment might also be simplified by clipping the signal prior to multiplication, and new 
calculations will be presented which demonstrate the effect of this process. In  order 
to obtain the clipped Doppler autocorrelation function it is necessary to evaluate the 
generating function of the joint probability distribution of intensities containing both 
incoherent and coherent components. Finite sample time effects will be neglected for 
the purposes of this latter calculation. 

The  next section is devoted to a general discussion of the intensity autocorrelation 
function, its connection with the field spectrum and with digital experiments of the 
integrated photon-counting statistics type. In  $ 3  the technique of clipping is defined 
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mathematically and expressed in terms of photon-counting distributions and the 
related generating functions. These are calculated for certain special cases in 4 4 and 
the autocorrelation functions of clipped signals are evaluated and discussed in the last 
section of the paper. 

2. Analysis of intensity fluctuations by autocorrelation 
This section is intended to serve mainly as a notational introduction to quantities 

of interest in the field of optical spectroscopy, although some results are presented 
which to the author’s knowledge have not previously appeared in the literature 

For a wide class of optical fields a measurement of the intensity autocorrelation 
function is sufficient to determine completely the field autocorrelation function. For 
example, when the probability distributions of the Fourier amplitudes of the field are 
Gaussian the normalized second-order autocorrelation function g‘”(T) factorizes 
(Siegert 1943, Glaubsr 1963) 

where 
( € + ( T ) € - ( o )  ) 

( I  ) 
g“)(r) = ( 3 )  

is the normalized optical autocorrelation function. If the field spectrum is symmetric 
about some mean frequency, g( I ) ( r )  is determined by a measurement O f  g‘2’(T) through 
equation (2). Relations analogous to (2) may be derived for statistics other than 
Gaussian but if the statistics are unknown Doppler experiments are more useful. In  
such experiments the field of interest €,+(t)  is mixed with the coherent beam from a 
strong local oscillator source of frequency w : 

& + ( t )  = 8,+(t)+1,1/2exp(-iwt). (4) 
Here IC is the constant intensity of the coherent contribution to the field. If I ,  is 
much larger than the average intensity ( I , )  then the normalized intensity auto- 
correlation function is given by 

and g ( l ) ( r )  can again be recovered from a measurement of g‘”‘(T). 

A rather different technique by which intensity fluctuations may be analysed is 
that of photon-counting statistics (for a list of references see Jakeman and Pike 1969 a). 
In  the simplest experiment a single probability distribution p ( n ;  5”) of the number of 
counts n arriving in a sample of duration T of the scattered intensity is determined. 
This can be related to parameters of simple model fields (Jakeman and Pike 1968, 
1969 a), though in practice its normalized factorial moments defined in terms of the 
mean number of counts f i  per sample by 

n(n-1) ... (n - r+l )p (n ;  T )  
n‘T)(T) = c (6) 

n=O f i r  

prove more useful for fitting purposes. This  technique is only useful when the 
statistics of the light and the shape of the spectrum are of a known simple form. Even 
if the statistics were known many photon-counting distributions for different values 
of T would be needed if a completely unknown spectral profile was to be determined. 
A knowledge of this dependence on sample time is equivalent to a knowledge of the 
intensity autocorrelation function, however, as may be seen from the following 
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considerations. It is not difficult to show, using Mandel’s (1959) formula 

I ,-m 

p(n ,  T) = J (aE)” exp( - aE)P(E) d E  
n! ,, (7) 

where E is the quantum efficiency of the detector and the integrated intensity is 
given by 

z + Ti2  

E(T; T) = 1 I((t)dt (8) 
? - T / 2  

that the normalized factorial moments of p ( n ;  T) are identical with the normalized 
moments of the integrated intensity-fluctuation distribution P( E).  Thus 

(9) .(2’(T) = - j + T i 2 d t j + T / a  dt(I(t)I(t’))dtdt’. 
- T / 2  - T / 2  

Multiplying this equation by T2 (recalling that ( E )  = (1)T) and differentiating 
twice with respect to the sample time leads to the formula 

d2 
dT2  (10) ~ (T2 ( 2 )  (T)} = gC2’( T) +gc2)( - T ) .  

Turning now to the direct intensity autocorrelation experiment by which g(”‘(-r> 
is constructed in real time, it is convenient to introduce a modified function to take 
account of the fact that sampling is never instantaneous, but characterized by a 
finite time interval T. This will be defined as follows: 

where E ( T ;  T) is defined by equation (8) and 

&“2’(T; 0) E g‘”‘(T). (12) 

The autocorrelation function of the integrated intensity may be related to that of the 
instantaneous intensity by differentiating equation (1 1) with respect to the sample time. 
For non-overlapping samples, 

As an example) consider the case of Gaussian-Lorentzian light 

g“’(T; 0) = 1 + exp( -2I’l~l). (14) 

The  correction to the intensity autocorrelation function due to finite sampling is 
obtained by substituting (14) into (13) and integrating. Applying the boundary 
condition (14) at T = 0 then gives (Pike 1969) 

g‘2’(T; T) = 1 + exp( - 2 F 7 )  cin::T)z, ____ T 2 T. 
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Although the discussion and results presented in the preceding part of this section 
are confined explicitly to the properties of the intensity autocorrelation function, they 
apply equally well to the autocorrelation function of photon-counting distributions 
since these two quantities are identical except for zero time difference, when there is a 
statistical correction. These properties may be demonstrated using the following 
generalization of equation ( 7 )  : 

( R E )  ( R E ’ ) % ’  
p(n ,  E’ ;  T )  = 1,“ d E  dE’ exp{ - &(E+ E’)} - ~ P(E, E’) (16) 

0 n! n’! 

where p(n, n’; T )  is the probability of counting n( t ;  T )  photoelectrons in the sample 
time T at time t and n’(t’; T )  photoelectrons in the same sample time at time t’. 
P(E, E’) is the corresponding distribution of integrated intensities. Using (16) it is 
not difficult to establish the relation 

where 8 = cr(E). At zero time difference the quantity on the left-hand side of (17) 
satisfies the previously mentioned relationship between the factorial moments of 
p(n ;  T )  and the moments of P(E),  namely 

3. Autocorrelation of clipped intensities 
Earlier theoretical work has been concerned with the analysis of continuous signals 

at microwave frequencies and it is convenient to extend this work into the optical 
region by first considering the possibilities of intensity clipping. By straightforward 
analogy with the earlier work (for example Van Vleck and Middleton 1966) a normal- 
ized autocorrelation function of clipped integrated intensities may be defined as 
follows : 

Gbb(’)(T; T )  = 1; d E J m  dE‘P(E,  E’).  (19) 
b 

This definition describes the autocorrelation of intensities which are set equal to zero 
if they are less than b and equal to 1 if they are greater than that value. The  double 
subscript on the left-hand side is used since, in principle, clipping could be carried 
out at different levels in each channel. In  practice the most commonly occurring and 
useful form for P(E, E’) is that given by Siegert (1943) for Gaussian light in the limit 
of small sample times. The integral on the right-hand side of (19) cannot be per- 
formed analytically for this function, however, and G b b ‘ 2 ’ ( 7 ;  T )  can only be expressed 
as a complicated sum of terms containing the true autocorrelation function. The  latter 
cannot be extracted from a measurement of the former quantity, therefore, without a 
good deal of computation. Fortunately, the mathematical situation is greatly improved 
if only one channel is clipped and a single clipped autocorrelation function may be 
defined which proves to be of much more practical use: 

CO 

Gb‘2)(~; T )  = 1; E‘ dE’ 1 dEP(E ,  E’). 
b 

I t  is a relatively small step, now, to define corresponding autocorrelation functions 
of clippcd photon-counting distributions with which the remainder of this paper will 
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be concerned. Appropriately normalized and with integer subscripts kk’ they may 
be written in the following form: 

m m  

n > k  n>k’ 

The right-hand sides of equations (21) and (22) are conveniently expressed in 
terms of the generating function of the joint integrated intensity-fluctuation distribu- 
tion 

Q(s, s‘; T )  = (exp{ - (Es + E’s’)} ) (23) 
through the relation 

( - K ) ~  (-Y.)“‘ d” d”‘ 
n! n’! dsn ds”’ 

p(n ,  n’; T )  = - ___ - - Q(s, s’; T)/,=,,=. (24) 

where, as before, r is the quantum efficiency of the detector and n, n’ denote n( t ;  T ) ,  
n’(t’; T ) ,  the number of counts arriving in the interval T at times t and t’ respectively. 
In  the earlier paper (Jakeman and Pike 1969 b) gOqc2) (T ;  0) and gk(”(7; 0) were 
evaluated in this way. A finite sample time calculation is in general much more 
difficult, however, and will be restricted in the present paper to the case of Gaussian- 
Lorentzian light. 

4. Generating functions 
The first part of this section is devoted to an evaluation of Q(s, s’; T )  defined by 

(23) for Gaussian-Lorentzian light. This will allow the autocorrelation functions 
defined by (21) and (22) to be determined using equation (24). Since the effect of 
clipping in Doppler experiments is also of interest, the generating func- 
tion &(s, s’; 0) for a mixture of Gaussian light of arbitrary spectral profile and a 
single coherent mode will be derived in the second part of the section. 

4.1. Ii~tensity-fEuctuation experiment, T # 0 
The  mathematical techniques employed to find Q(s, s‘; T )  are analogous to those 

used by Meyer and Middleton (1954) and more recently by Dialetis (1969) and 
represent a natural generalization of the approach used to obtain Q(s; T )  in earlier 
papers (see, for example, Jakeman and Pike 1968). I t  is shown in appendix 1 that, 
for fields whose Fourier amplitudes have Gaussian probability distributions, (23) is 
given by 

1 

where the dependence of hk on s and s‘ is determined through the integral equation 

(S  f T t T i 2  +S’  g“’(t-t’)+k(t’) dt’ = hk$k(t) (26) 
T - T!2 - T i 2  
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and g(l)(t) is defined by equation (3). For a Lorentzian spectrum centred at wo,  

gLOrc1)(t - t’) = exp{ - r ( t  - t’) + iwo(t - t’)) (27)  
the integral equation ‘(26) can be solved exactly and following the method given in 
appendix 1 it may be shown that the eigenvalues are given through the relation 

in terms of the roots tk of the transcendental equation 

where 
F ( f )  = 0 

F ( f )  = exp(-2y) { c o s h y t  

-&/gLo~1)(T)~2(-- Y Y  -1 (q - L) sinhy sinhy’ 
Y Y Y  Y 

and 

y = I’T 
y2  = y2+2ys(E)f 

y ”  = y2 + 2ys’ ( E  ) f .  

(30) 

Kow F ( t )  is an entire function of f of order 3 and genus zero, so that applying 
Hadamard’s factorization theorem (Ahlfors 1966, p. 207) it may be expressed as an 
infinite product over its zeros. Since F(0)  is unity this takes the form 

Comparison of (25) and (34) gives the desired closed form for the generating function 

1 
QLor(S, s‘; T )  = - 

F(1)  * 
(35) 

The generating function for the single integrated intensity-fluctuation distribution of 
Gaussian-Lorentzian light (BCdard 1966, Jakeinan and Pike 1968) may be obtained 
by setting s’ equal to zero in this equation. 

4.2. Doppler experiment, T = 0 
Consider now a field consisting of a single coherent mode of amplitude ,B displaced 

to a frequency w from the centre of the spectrum (assumed symmetric) of a Gaussian 
component (Jakeman and Pike 1969 a). The  generating function 

&(s, s’; 0) = (expi-(sl+s’l’)}) (36) 
of the joint intensity-fluctuation distribution of such a field in the small sample time 
limit is conveniently obtained from the moment generating function of the fourfold 
probability distribution P{b+(t), €-(t), &+(t’), &-(t)). This generating function 
takes the rather simple form 

l$f,,(sl, s2, sl’, s2’; 0) = exp[ - {sl/3 exp(iwt) + s 2 P  exp( - iwt) 
+ss,’/3 exp(iwt’) +s2’/3* exp( - iwt’)}] 
x exp[ (E){(slsZ + ~ ~ ’ s ~ ’ ) g ( ~ ) ( O )  +(slsz’+s~s~’)~g(l)(~)l)l. (37) 
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By expressing the generating function Q(s, s‘; T )  in terms of angular integrations of 
the fourfold field probability distribution it may be shown quite generally that 

x M(s1, $ 2 ,  Sl’, sz’; T ) .  (38) 

Substituting from (37) into (38) leads to the result 

&(S, S’; 0) = eXp( - (W)Q(S, S ’ ;  o)[S f s ’  +2Ss’ (E){g(’’(o) - lg(l)(T)l COS UT}]) 

x Q(s, s’; 0 )  (39) 

(40) 
where 

Q(s, s’; 0) = ((1 + (E)s)(l+ (23)s’)- (E)2ss’jg(1)(T)1a)-1 

is the generating function of the joint intensity-fluctuation distribution P(I ,  1’) given 
in the earlier paper (Jakeman and Pike 1969 b), and ( W }  ( =  ] P I z )  is the intensity of 
the coherent mode. 

5 .  Results and discussion 
In  order to assess the order of magnitude of the corrections to previous results, 

which arise from sample times which are finite but small compared with the coherence 
time of the signal being analysed, it is interesting as a first approximation to consider 
an expansion of (35) to first order in y :  

where $ILor($, s’; 0) is obtained by setting T = 0 in (35) and is identical with (40) 
when g“)(T) is replaced by gLor(l)(T). The required correction to the autocorrelation 
function of the clipped signal can be calculated to first order in the sample time T 
using the definitions (21), (22) and (24) and the approximate expression for the 
generating function (41). 

The  exact autocorrelation function generated by clipping intensities in both 
channels at zero is of the form 

where Q(s; T )  = Q(s, 0;  T )  is the generating function corresponding to P(E).  
Clipping at higher levels in both channels gives rise to increasingly complicated 
formulae. For a Lorentzian spectrum and small y (42) may be evaluated with the help 
of (44) to give the approximate result 

1 +{(I - f i ) / ( I  ffi)}IgLor(’)(T)I2 27’ fiz!gLor(’)(T)l2 goo(2)(T; T )  = - -  
1 - @/(I  + fillZ lgLor(1)(4 l 2  3 ( 1 + q 3  

Calculation of the correction in the single clipped case is not quite so straightforward 
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though the final formula is rather simple. In  appendix 2 it is shown that this is 

If y is set equal to zero in (43) and (44), a special case (i.e. Lorentzian spectral profile) of 
the results presented in the earlier paper (Jakeman and Pike 1969 b) is recovered. For 
small values of f i  the right-hand side of (43) then reduces to (2) and only statistical 
accuracy is lost by clipping. On the other hand, for large f i  all spectral information 
is lost by clipping at zero as might be expected. Similarly when T = 0 (44) reduces to 
(2) when k N fi  and little spectral information is lost by making this choice of clipping 
level whatever the value of ii. 

Relations (43) and (44) reduce to the expected results when f i ,  k < 1. The  
correction term then vanishes since clipping has little effect on the signal andg@)(T; T )  
is an even function of y from (15). For clipping at the mean (44) reduces (for integer f i )  
to 

(45 ) 
Y f i  
3 1 + f i  

gZ(')(T; T )  = 1 + lgLor(1)(T)[2+ -- IgLor(l)(T)l'. 

It is interesting to compare (45) with an expansion of (15) in powers of y 2 :  

Whereas for y = 0.1 an error of 0.3% would be made in the coefficient of [gLor(1)(T)[2 

rT 
Figure 1. Maximum decay of the intensity autocorrelation function of Gaussian- 
Lorentzian light when clipping at zero is carried out in both channels. The  

values of ii are shown against the curves. 
A7 
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by neglecting sample-time effects in a full autocorrelation, an error of 1.7% would 
be made in the autocorrelation of the clipped signal for +i = 1, rising to 3.3% for 
ii > 1. Comparison of (43) and (46) is not so instructive since for zero sample time 
the two autocorrelation functions are not identical unless is vanishingly small. If 
the latter condition is satisfied the correlation vanishes to first order in y since, as 
mentioned above, clipping at zero then has little effect on the signal. If ii is not small 
the correction factor is a function of the correlation time T. 

The effect of arbitrary sample times (i.e. y not small) on the autocorrelation 
function of a clipped Gaussian-Lorentzian signal can be ascertained using the exact 
form of QLor(s, s'; T )  given by equations (30) and (35). Figures 1 and 2 show the 

Figure 2. Maximum decay of the intensity autocorrelation function of Gaussian- 
Lorentzian light when clipping at zero is carried out in one channel. The  

values of E are shown against the curves. 

results of such calculations for various ii when the clipping levels are set at zero. Since 
the largest effect occurs for small correlation times, the graphs are plotted for T = T,  
i.e. the smallest value of T for which sample times do not overlap. The  quantity 
plotted is g(2)( T ;  T ) -  1 and in fact represents the overall maximum decay of the 
autocorrelation function which can be measured experimentally; it is thus an indica- 
tion of the sensitivity decrease with sample time. For values of y 9 1 it decreases like 
l/y2. For y < 1 the correction terms in (43) and (44) have a small effect by comparison 
with that of the condition T > T, since in the case of a Lorentzian spectrum this 
restriction reduces the sensitivity exponentially for small y. For example, setting 
l77 = 0.1 in (45) with T = 0 yields avalue of 0.8 for the lgLor(1)(T)12 factor as compared 
with unity when T = 0-a reduction of 20%. When clipping is carried out in one 
channel at the mean the additional correction which appears in (45) tends to diminish 
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this fall in sensitivity slightly, but when clipping is carried out in both channels at zero 
the effect is enhanced by the additional correction present in equation (43). The size 
of the term proportional to y in equation (44)  can in fact be reduced by suitably 
adjusting the values of K and f i  but this tends to reduce the sensitivity of the technique. 

The  effect of clipping on Doppler-type experiments is more complicated, as can be 
judged from the form of the generating function (39).  However, expressions for the 
clipped autocorrelation functions can in certain cases be obtained using the definitions 
(21) ,  (22) and (24)  as before. For example, clipping at zero in both channels gives 
rise to the autocorrelation function 

exp[(Zfi,fi,[g(l)(T)I cos W T ) / ( ~  + E ~ ) ~ ]  +{fi,/(l +fii))2/g(1)(7)12- 1 
[I -{fii/(l +fii))2[lg(1'(T)12][(1 +f iJ  exp(fi,/(l +fii))-1I2 

goo'2'(T; 0 )  = 1 + 
(47)  

where fi, = % ( E )  and f iC = .(W). Clipping in one channel at an arbitrary level K 
leads to a more complicated result, but when E c  % fii the approximate formula 

f i C m + l  ( - a)m - - 
ds" ds s=o  (l+fii)2n+3 

may be used to obtain the following result 

If clipping is carried out at zero in one channel it is possible to obtain a fairly simple 
exact formula. This  is 

I n  the limit f ic % Ei this reduces to (49)  with K = 0. 
These results indicate that the use of clipping techniques in a Doppler type of 

experiment is feasible in that the true autocorrelation function could be extracted 
from that of the clipped signal. However, one of the main advantages of the usual 
Doppler experiment, namely its independence of the statistics of the scattered light, is 
lost by clipping at a fixed mean because the autocorrelation function of the clipped 
signal is in this case a function of the higher-order natural correlation functions and 
therefore depends on their factorization properties. The  use of a statistical distribution 
of clipping levels to overcome this difficulty is a possibility worth considering. 

Several more general conclusions may be drawn from the calculations of this 
paper. It is evident that, at least in the case of Gaussian light, clipping in one channel 
rather than two may prove more useful in practice owing to the ease with which the 
true autocorrelation function can be recovered from that of the single clipped signal. 
A suitable experimental arrangement is described by Foord et al. (1969) (figure 3) who 
have measured the diffusion constant of protein molecules using this technique. It is 
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also advantageous both from the point of view of experimental sensitivity and theoreti- 
cal simplicity to minimize finite sampling time effects. Only when these are small is it 
possible, in general, to recover an arbitrary spectral profile from the clipped auto- 
correlation function. The obvious way to achieve this is to ensure that the sampling 
time is small compared with any coherence time of the light under investigation, but 

Apertures 

beam 

I I 

Figure 3. Block diagram of the use of a single-clipping autocorrelator after 
Foord et al. (1969). The clipped signal passing through the shift register in 
real time controls '&' gates which allow storage of the true signal when the 

clipped value is unity. The quantity (nk(0)n(7))  accumulates in the store. 

working with low values of f i  and low clipping levels also seems to be beneficial in this 
respect. The  latter conditions are also advantageous in Doppler experiments because 
the effect of clipping signals prior to autocorrelation is thereby minimized and the 
particular merits of such experiments, mentioned above, are not lost by clipping. 
Earlier in this section the maximum measurable decay of the autocorrelation function 
was taken to be an indication of the sensitivity of the technique. It is not the only 
factor affecting the sensitivity, however, as inspection of equation (44) demonstrates. 
The  maximum decay of the single clipped autocorrelation function given by this 
formula is seen to be (1 + k ) / ( l + f i ) ,  neglecting finite sample time effects, a quantity 
which can be increased indefinitely by raising the clipping level k .  The sensitivity of 
the technique is not necessarily increased by this process because it is also a function 
of the statistical accuracy of the measurement. As the clipping level is raised, the 
frequency of non-zero correlation for a given E is decreased so that, unless the number 
of samples of the signal (and hence the total experiment time) is increased, the statisti- 
cal accuracy of the measurement is lowered. In  this context it is, of course, of great 
interest to know exactly how much statistical accuracy is lost by clipping prior to 
autocorrelation. This and other problems related to the experimental errors incurred 
during digital autocorrelation of optical signals will be discussed in a future publication. 
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Appendix 1. Evaluation of Q(s, s’, T) 

The author is indebted to Dr. E. R. Pike and other members of the Physics Group 

Using the notation of Jakeman and Pike (1968) the joint generating function 

Q(s, s‘; T )  = (exp(-sE-s’E’)) (All  

(4 

where 
r + T / 2  

SE + s’E’ = s j I(t) dt +s’ J T ’ 2  I(t) dt 
‘I - Ti2 - T / 2  

may be expressed in terms of the normal modes Ixk of the electric field defined by 

(A3 1 
where 

For Gaussian light the probability distribution of the Ixk is 

with 
j = <ni >St,. 

The transformation 
e k ( t )  2 skk’$k’(t) 

k’ 
with the normalization 

leads immediately to the result 

where 

Now 

k’k” 

so that, if the a,’s are now required to be statistically independent, 

with 

multiplication of (All)  by $k(t’) and integrating over t’ using (A8) leads to the integral 
equation 

(S / + S I  / + T ’ 2 )  {C%+(t)C%-(t’))$k(t’) dt‘ = (WZk)$,(t). (A14) 
z - T i 2  - TI2 
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Equations (Al), (A9), (A12) and (-413) give the generating function in the form of an 
infinite product over the eigenvalues of (A14) : 

(A15) and (A14) reduce to (25) and (26) when (A14) is normalized using the relation 

and the quantity 

<E > (a+(t)a-(t)) = - 
T 

T 
( E  > = - (mk). 

I n  solving (A14) for a Lorentzian spectrum (equation (27)) only the form of c$k(t) 
inside the two sample times centred on 0 and T need be considered. There are two 
casesassuming~ < 0. 

(i) T-T/2 < t < T f  T/2 
t z + 1’12 

z - T l 2  t 
s /  exp{-r(t-tr)}r$k(t’) d t ’ f s  exp(-l?(t’-t)}r$k(t’) dt‘ 

exp{-I’(t’ -t))r$k(t’) dt‘ 
+ s’ s - + Ti2 

(ii) -T/2 < t < + T/2 
z + TI2 t 

s 1 exp( - r(t - tr))fjk(t’) dt’ + s‘ J’ exp(-l’(t-t’))gbk(t’) dt‘ 
z - TI2 - Ti2  

+ s ’ / + T i 2 e X p ( - r ( t ’ - t ) } c $ k ( t r )  t dt’ 

= hkc$k(t). (A191 
These integral equations may be solved by differentiating twice with respect to t. This 
leads to differential equations with solutions of the form 

c$k(t) = A cos ut + B sin ut. (A201 
In  case (i) above, u2 = (2I’s- r2X)/X and, in case (ii), u2 = (2I’s’- I’2X)/X. Substitu- 
ting back into the integral equations leads to a criterion for non-trivial solutions which 
takes the form given in the text by equations (28)-(33). 

Appendix 2. Evaluation of gk(2) (7; T )  
The autocorrelation function of the single clipped signal may be written 

k 

e+ 2 (( -.)“/m!}(dm/ds”)(d/dsr)Q(~, s’; T )  
(A21) 

m = O  
gk‘2’(T; T) = k 

T ) ]  

where, to first order in y, Q(s, s’; T )  is given for Gaussian-Lorentzian light by (41) and 
Q(s; T) is obtained by setting sr to zero in the same equation. (A21) can be evaluated 
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with the help of the formula (derived from equation (41)) 

l + m  
m! dsmds’ s ’ = O  l+fi 

whereg (E \gLor(l)(T)1) is given by equation (27). 
The  numerator of (A21) takes the form 

( f i + 3 k f i - k 2 - f i 2 )  
(1 + f i ) 2  

whilst the denominator is given by 

Expansion of the ratio of (A23) to (A24) to first order in y then leads to equation (44) of 
the text. 
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